6,101,502

7

can be associated with each attribute to optimize attribute
retrieval from the database. As a default case, all attributes
are retrieved when any one of an object’s attributes are
needed. However, the attribute retrieval list for any attribute
can be edited to specify different attribute retrieval behavior.
For example, a request for an Employee Id may cause the
Photo attribute to be dropped from the attribute retrieval list
on the Id attribute if that data resides in another table and is
only infrequently used. Attribute retrieval lists are a perfor-
mance feature that enable optimized data access by only
doing JOINS and additional SELECT statements when the
data returned by those actions is needed.
Performance is also enhanced by “just in time” data
retrieval. By default, whenever an attribute value is read
from the database, all of the other attributes for that instance
are also read. However, Data Component Developers are
permitted to modify the mapping information for a Data
Component to define an attribute retrieval group for each
attribute of a class that determines which other attribute
values are returned when the requested attribute is read from
the database. This makes it possible to avoid executing
JOINs or SELECTS to retrieve data that may not be needed.
For example, assume that a class, CPerson, has four
attributes: Id, Name, Zip, and Photo, and the Photo attribute
is mapped to a column in a different table from the others.
The Data Component Developer may drop Photo from the
group of attributes that are retrieved when either Id, Name,
or Zip are read. A query is issued to get the Name and Id of
a instance of CPerson where Id=10. Based on the attribute
retrieval information, the run time engine retrieves only the
values for the person.id, person.name, and person.zip
attributes, thus avoiding an unnecessary join to return the
photo attribute value as well.
If an object does not have an attribute in memory when an
attempt is made to use that attribute, the object will issue a
SELECT statement to retrieve the attribute from the data-
base. “Just-in-time™ attribute population allows the object to
be populated with the minimal amount of information nec-
essary for the application while still making any remaining
information available when it is needed.
Lazy reads are also employed to enhance runtime perfor-
mance. When a query is defined to identify objects for
retrieval from the database, the SQL SELECT statement is
not issued immediately. Queries are executed only after an
attempt has been made to use or modify the resulting data.
Having described the embodiments consistent with the
present invention, other embodiments and variations con-
sistent with the present invention will be apparent to those
skilled in the art. Therefore, the invention should not be
viewed as limited to the disclosed embodiments but rather
should be viewed as limited only by the spirit and scope of
the appended claims.
What is claimed is:
1. A method for interfacing an object oriented software
application with a relational database, comprising the steps
of:
selecting an object model;
generating a map of at least some relationships between
schema in the database and the selected object model;

employing the map to create at least one interface object
associated with an object corresponding to a class
associated with the object oriented software applica-
tion; and

10

15

20

25

30

35

40

45

50

55

60

8

utilizing a runtime engine which invokes said at least one
interface object with the object oriented application to
access data from the relational database.

2. The method of claim 1 further including the step of
mapping a class attribute to a table column.

3. The method of claim 1 further including the step of
mapping a class attribute to a 1-1 relationship.

4. The method of claim 1 further including the step of
mapping a class attribute to a 1-N relationship, where N is
an integer that is greater than 1.

5. The method of claim 1 further including the step of
mapping a class attribute to an N-N relationship, where N is
an integer that is greater than 1.

6. The method of claim 1 further including the step of
mapping class inheritance to rows within a table.

7. The method of claim 1 further including the step of
mapping class inheritance across a plurality of tables.

8. The method of claim 1 further including the step of
creating a plurality of said interface objects.

9. The method of claim 8 further including the step of
creating at least one stateful interface object and at least one
stateless interface object.

10. A computer program fixed on a computer-readable
medium and adapted to operate on a computer to provide
access to a relational database for an object oriented soft-
ware application, comprising:

a mapping routine that generates a map of at least some

relationships between schema in the database and a
selected object model;

a code generator that employs said map to create at least
one interface object associated with an object corre-
sponding to a class associated with the object oriented
software application; and

a runtime engine that invokes said at least one interface

object to access data from the relational database.

11. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to a table
column.

12. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to a 1-1 rela-
tionship.

13. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to a 1-N
relationship, where N is an integer that is greater than 1.

14. The program of claim 10 wherein said mapping
routine is operative to map a class attribute to an N-N
relationship, where N is an integer that is greater than 1.

15. The program of claim 10 wherein said mapping
routine is operative to map class inheritance to rows within
a table.

16. The program of claim 10 wherein said mapping
routine is operative to map class inheritance across a plu-
rality of tables.

17. The program of claim 10 wherein said code generator
is operative to create a plurality of said interface objects.

18. The program of claim 17 wherein said code generator
is operative to create at least one stateful interface object and
at least one stateless interface object.



